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ABSTRACT

The development, fabrication, and characterization of a high~
speed silicon avalanche photodiode for 0.9 um are described. Two
structures, an NPwP and a graded-guardring NP structure, were
fabricated. On the planar NPWP structure, edge breakdown was
found to be a problem of structures having wide 7-regions. Since
wide depletion layer widths are required for high ac quantum effi-
ciency at 0.9 um, effort was shifted entirely tc the ntp structure.

Final characterization showed that all the N'P diodes delivered
had low-noise avalanche gains greater than 160, with many diodes
exhibiting gains greater than 103. The diocdes typically have a
series resistance of 50 ohms, junction capacitance of 1,3 pF, noise
slope of 2.5 or less, ac quantum efficiency of 35 percent, bulk
leakage -~ vent of 0.5 nA, and a breakdown voltage of 170 volts,

The NEP of a 30-MHz bandwidth photodetector system was fcund tc
measure 2 x 10713 w 5z"1/2 at an optimun gain of 160--a factor of
100 improve nent over a non-avalanching photodetectcr.,
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SECTION I
TECHNICAL REVIEW

A, PURPOSE

Texas Instruments has conducted a program of development aimed
at fabricating photocdiodes which satisfy the following goais:

1) A photodiocde will be developed which utilizes the
avalanche mechanism.

2) The detector will be optimized to operate at 0.9-um
wavelength.

3) Design goals for the detector will be a response of
0.15 ns with a sensitivity egqual to or better than
that of a photomultiplier tube used at the same
wavelength.

4} The photodiodes will cperate at and above room
temperature and will not be affected by 100°C
storage temperature.

5) The photodiodes will be capable of providing
amplification of 160 or greater.

The program consisted of two phases: I, design and fabrication
of the avalanche photodiodes; II, testing and characterization.
Phase II began upon completion of the first diffusion runs to deter-
mine whether any modifications ia the original design were neces-
sary to achieve the desired characteristics. Specific steps of
the complete program were:

1) Obtain photomasks

2) Determine optimum diffusions

3) Produce experimental epitaxial slices
4) Fabricate experimental planar diodes

5% Characterization of experimental diodes, including
quantum efficiency, gain characterization, noise
performance, and frequency response.
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B. . GENERAL FACTUMNL DATA

Personnel and Hours Worked, Third Quarter

Professicnal

Hours
W. H. Shaunfield 332.0
Jinm Lewis 2.0
Total Professional 334,.0
Technician
Jerry Reid 465,0
Pauline Harris 10.0
Total Technician 475.0

C. DETAILED FACTUAL DATA

1. Device Design and Fabrication

a. General

An avalanche photodiode is a semiconductor junction
photodiode designed to utilize the avalanche multiplication effect
to achieve a signal current gain in the detector. When used in a
photodetector system in which sensitivity is normalliy limited by

noise in the preamplifier, avalanche gain offers an improved sys-
tem sensitivity.

During the course of this effort, two silicon ava-

ianche photodiode structures were investigated. Initially an NpxP

structure was considered; however, some inherent linmitations of
this structure were discovered, and effurt was abandoned in favor

of the simpler N+P structure. This structwre, utilizing a graded

guardring, was successfully fabricated with gains typically over 103.

Each of the iwo structures is discussed in the following paragraphs.
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b. NpzPp Structure

A cross~section of the NPsP structure is shown in
Pigure 1., The diode was fabricated using standard silicon planar
epitaxial techniques as listed in the £ollowing order:

1) Grow ¥ (low-concentration P-type)
epitaxial layer on high-ccncentration
substrates.

2) Diffuse P-type dopant (boroanj in center
active region and inversion-stopper ring.

3) Diffuse N-type dopant (phosphorus) in
active region and guardring,

4) Apply front and back contacts.

Operaticn of the diocde is best understood by con-
sidering the typical electric £ield at breakdown as seen in Fig-
ure 2. HNormally, in a single planar diffusion, avalanche break-
down occurs at the edge due to the increased flux density and
higher electric field at the sharp diode edge. Introducing the
P-diffusion in the active region of the HPIP structure produces
a sharp spike in the electric fielé at the juncticn, as shown by
the solid line in Figure 2. It was expected that this spike wculd
cause the breakdown voitage to be lower here than cn the lunction
edge. Neglecting the effects of radius of curvature at the H-
diffusion 2dge, the electric field for the guardring is shown by
the dasherd line in Pigure 2.

Dur:ng operaticn, light entering tThe surface is
absorbed throughcut the bulk in an exponentially decreasing zanner,
For each photon absorbed an electron-hole pair is created. Eiec~
trons absorbed in the depletion region between O and X, are swept
to the junction at the electron saturated drift veloci;y by the
high electric field. At the junction the e2lectrons experience
avalanche muitiplication. Normally the reverse bias voltage is
adjusted to a value just below sustained avalanche breakdown.
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The structure was chosen so that electrons instead of holes would
be generated in the high field region and swept to the avalanche
region. In silicon the higher electron ionization rate yields an
electron gain much higher than the hole gain,

Calculations made to determine acceptabla ranges

for the impurity concentrations & showed that the acceptable range
of the P~diffusion concentration, N_, was very critical (3 x 1016
to 6 x 1016 cm"3). Diodes were fabgicated with the required im=
purity concentrations, as verified by using the capacitarce-voltage
technique for determining impurity concentration.g/ However, all

of the diodes fabricated had edge breakdown, occurring before the
electric field in the active region had reached sufficient magni-
tude to give appreciable gain. The continued result of edge break-
down prompted a further investigation of the edge electric field.

In the calculations on required impurity concentra-
tions the effect of junction curvature on the electric field was
neglected, Along the edge of the planar-dififused junction a
cylindrical junction is formed with radius approximately equal tc
junction depth. As a result the electric field is greater than in
a plane junction, and breakdown voltage is reduced., Por the case
where the junction depth is small compared to depletion width the
breakdown voltage is significautly reduced,

For the case where depletion width extends to a pt

substrate, as in the NP71P structure, edge effects are nnt as sig-
nificant. This can be illustrated graphically if several simpli-
fying assumptions are made:

1) Assume that the depletion region can be repre-
sented by a capacitor with plates separated by
the plane junction depletion layer width.

2) Assume thet there is ro charge between the
plates, : .

Assumption 1 is not valid, since the depleticn width of the cylin-
drical junction is not as wide as that of a plane junction for the

e e e e e
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same applied bias; neither is assumptior 2, since there is charge
in the depletion region.

Although these assumptions are not valid for a de-
pletion region, they do allow the effects of a P+ substrate on the
peak electric field to be illustrated by the graphical field-mapping
technique. It should be pointed out that, althcugh the field in a
PN junction could be graphiecally mapped, the complication would not
add to understanding of the effect.

Using the assumptions above, the electric field for
a diffu<ed junction is shown in Figure 3a. ©Wotz that the highest
electric field, represented by close spacing of the flux lines,
occurs at the junction edge. In Figure 3b the field is shown for
the same potential applied to a junction with a pt substrate under
the N+—diffusion; Hote that the electric field at junction edge
is not appreciably changed, while that at the plane portion of the
junction is significantly increased. Ra*io of edge breakdown volt-
age to center breakdown voltage would be much less in (b} than in
(a).

In the NP7P structure the peaking of electric field
in the active region is further aided by the P-diffusion; however,
the edge effect puts closer limits on e already critical dimen~
sions. To prevent edge breakdown in the NpPwP structure it is neces-
sary that the epitaxial layer width be small compared to breakdown
depletion layer width in a concentration equal to that of the
epitaxial layer. This requirement is contradictory to the wide
epitaxial layer widths required for high quantum efficiency at
0.9 um and the impuritv concentrations possible with epitaxial
techniques. It is felt that the NP7P structure would probably
work with the concentrations and dimensions discussed in the first

quarterly report; however, this would require extremely accurate
control of diffusions.
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Two additional techniques can be employed to reduce
edge effects in the NPwP structure. The first iz to make the N-
diffusion deeper. This results in a larger radius of curvature at
the junction edge, reducing the peak alectric field. There would
be a reduction in gquantum efiiciency. The cther technique would
be to etch a moat into the region which normally is depleted at
the junctior edge. If there were no material to ba depleted the
electric field could not rise to the high value normzlly at the

edge. However, the etched surface could result in high leakage
cuxrrents.

A lazge portion of the contract effort was spent in
the reduction of surface leakage currents. The lightly doped
T-layer at the diode surface is very susceptible to surface con-
ditions aad almost always inverts to N-type for Tm-concentrations
of 10%° cu™3 and less. fTaese thin inversion layers on the dicde
surface were found to be the cause of high leakage currents.

The original design ~f the photomask included a
P-type inversion-stopper ring which was diffused with the p-diffusion
in the active region. However, the impurity concentration required
in the active area proved tc be too low for the inversion-stopper
ring to be completely effective. Surface concentration of the
P-diffusion is approximately 10%7 cm"3, while that reguired for
the inversion stopper is 5 x 1018 cm-3. Two possible solutions
were considered:

1) Perform a separate »*_giffusion in the
ring.

2} Alloy an aluminum contact to the existing
diffusion.

Aluminum, which is a P-type dopant in silicon, when alloyed to the
ring should prevent inversion layers from forming over the inversion-
stopper xing. The second apprcach was tried first, since this

could be done during application of contacts and would not reguire
an additional processing step.
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The additional photomask required for the aluminum
ring was received durinc¢ the second quarter, and several runs were
made with this approach. Results were not as good as expected.
Leakage current was high, and there was drifting of the current with
time at high reverse-bias voltages.

Traces made with an cptical microprobe showed that
under reverse bias an inversion layer was formed under the alumi-
num inversion-stopper ring. In making an optical-microprobe trace
the diode is contacted between the P-contact on the back of the
slice and the N-contact cn the active region, and the photocurrent
due to a 0.2-mil-diameter spot of light traced across the surface
of the diode is measured. In addition the light is modulated at
400 Hz and the current is synchronously demodulated to avoid
errors due to dark leakage currents. Magnitude of the signal
versus distance is plotted on an X~Y recorder.

Figure 4 shows several plots made at different bias
voltages on a diode with the aluminum inversion-stopper ring. The
large photoresponse between the N+—diffusion and the inversion-
stopper aluminum indicates that inversion layers are present on
the surface. The diode formed by the N-type inversion layer and
the 7-type bulk is light sensitive like a conventional diode. Hote
that at 2.0 volts bias the inversion-stopper ring is effective in
isolating the diode’s active region from the inversion layer cut-
side inversion-stopper ring. However, as reverse bias is increased,
photoresponse is cbserved outside the ring, indicating formation
of an inversion layer under the ring connecting the insiée and out-
side inverxsion layers. Inversicn-layer photoresronse outside is
lower than inside, apparently because cf series resistance under
the ring. Note that photoresponse falls off where the oxide was
removed along the scribe line, indicating that this removal reduces
the inversion layer's adverse effect. At bias voltages near break-
down {180 to 240 V) the leakage current was still too large, being
typically 200 ua.

10
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Bacause of the probiem with aluminum alloyed to the
P-ring, the other approach, requiring a separate P*—diffusion, was
tried. Although an additional processing step is necessary the
diffusion is not critical. A photomagk with only the inversion-
stopper ring was obtained, and geveral runs were fabricated by
- this method. Results were very encouraging. An optical-microprobe
E - trace showed no photoresponse ocutside the ring, and leakage currents
1 typically were less than 100 nA at 150 volts bias. In addition no
S drifting of the leakaga current was observed. The separate pt-
”; 3 diffusion was included in the N'P structure and found to be effec-

tiva there also.

Ce N*P Structure

?2_f5 Because of the problems with the NPWP structure the
E simpler N'P structure was also fabricated. This structure utilizes
a deeply graded guardring to prevent edge breakdown. The guardring
has a breakdown voltage larger than that of the avalanche region
because of the large radius of curvature of the junction edge, and
ol also because the junction is gradeg and depletes on either side of
the junction. A cross-se. on of the structure is shown in Pig-

Lt it

= ure 5. Not shown in the figure is the P+~inversion—stopper ring.
The composite photomask layout for the structure is seen in Fig-
= ure 6.

The diode was fabricated by doing planar diffusions
into 6.5-{l-cm P-type substrates. The N-type guardring diffusion
> is 5 ym deep; the N+—type active-region diffusion is approximately
- 1.0 ym deep. The 6.5-f-cm substrate gives a i0-um depletion-
layer width at an average breakdown voltage of 170 V.

O RO RN OLE

Results of all runs were very good. No edge break-

A

it

down was observed. Premature microplasma breakdown resulting in
low gain was cobserved on some diodes; however, the yield was very
good. Gain of the good diodes was typically over 103 and uniform.

CERCILECEACNE E E ERt
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Optical-microprobe traces across the surface of a typical diode for
several values of gain are shown in Pigure 7. Traces were made be-
fore contacts were applied; thereforas photoresponse is recorded
across the entire diffused area for the trace ¥ =~ 1. Also, the
photoresponse indicated presence of an inversican layer cut to the

inversion-stopper ring.

) The ampliifier gain was so reduced that the traces
for ﬁis 28.5 and ¥ = 157 would be on scale. At a gaiu of 157 some
variation of gain across the surface is cbeerved; however, the
variation is within # 5 percent. The variation in the trace at a
gain of one is due to noise in the zmplifier. The other two traces
clearly illustrate the improvement in signal-to-noise ratio cob-
tained with avalanche gain.

At the end oi the second quarter 10 each of the
NPTP and N'P diodes were delivered under the contract. At the end
of the fourth quarter 20 additional N*P diodes were delivered, and
a complete characterization of these diodes is given in the next

section.

d. Package and Diode ¥Mcunt

Ten of the 20 final diodes supplied cn the contxact
were mounted in the coaxial pill package shown in Pigure 8. Kot
seen is the 1id, whica has a lens formed in a 40-mil aperture.
Using a collimated light source, such as a laser, the lens prejects
a spot on the dicde less than )0 mils in diameter. The package
can e mounted in a PC board or in a BXNC connector, using the
diode mount shown in Pigure 9. With the diode ard pin installed,
the shell is s1i4 inside the BNC connector, meking sure the shell
contacts the top ring of the diode. 1In the normal reverse-biased
mds for the N'P structure %he Pin is biased negative with respect
to the shell. The other 10 diodes were mounted in a TO-18 package

as shown in Figure 10.
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Figure 8, <Coaxial Pill Package

2. Device Characterization

In this section the testing of the 2C NP diodes is de-
scribed, and the results are related to the expected theoretical
performance., A summary of the diodes' characteristics is pre-
sented in the table on page 20.

a. Gain Characteristics

. Avalanche gain for the measurements was found by
taking the ratio of the diode photocurrent at high reverse bias
near breakdown to the photocurrent at a low bias voltage. The
low-frequency measuring circuit is seen in Fiqure 11, The measure-~
ment was made using a 0.9~um gallium arsenide light-emitting diode
modulated at 400 Hz., Using the photoresponse at 40 volts bias for

a reference gain cf one, the typical gain-voltage characteristic
for a graded-guardring diode is shown in Figqure 12,

17
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Figure 9. BNC Diode Mount

The gain-voltage characteristic for avalanche has
by Miller ¥ as

M = L (1)

1= (/)

= diode voltage

i

breakdown voltage

ampirical ccnstant
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Figure 10, T0-18 Package

By plotting 1/M vexsus V as shown in Figure 13, the breakdown voli-
age can be accurately destermined. Breakdown voltage is defined as
the voltage at which the awvalanche gain approaches infinity or 1/M
approaches zerc. by expanding the data of Figure 13 around 176G volts
the breakdown voltage was found to be 170.26 volts, Using this

value for VB and the data given in Figure 12 the exponent, n, of
Equation (1) can be determined. A plot of n versus V in Figure 14
shows that n is not constant for low gains. However, for gains
greate - than 62, the normal operating range, n is a constant, 0.3,

The breakdown voltage and gain discussed in the pre-
ceding paragraph are room-temperature values; however, since the
impact ionization rates vary with temperature, there is a change
in the breakdown voltage and a corresponding change in the gain
with temperature. The breakdown voltage at 10 pa dark current was
measurad on a group of diodes at temperatures from ~50°C to +50°C,
2 plot of the typical diode characteristics is shown. in Figure 15.
The breakdown voltage increases with temperature at a rate of
194 mV/°C. Other diodes having a higher breakdown voltage had a
slightiy higher slope, and vice versa. The temperature coefficient,
B, of the breakdown voltage is ofter used when discussing a refer-
ence diode.

1 9V

B-_-—,—-- 2
v, T , (2)

For the diodes tested B was a constant, 1.15 x 10-3/1°C.

19




LR

EGERETRIeT AR X SR ) ,H‘:‘W‘.ﬂ,;ﬁ ’M‘ Kk
' ’y i L K "
oy enran

LRI [y Y

R i § R TR
C e
.

KRR AL PN

de LY Fa%e ] ”~
RC?’G: - tUe WI—O

Sunmmary of Diode Characteristics

Diode v at I I
No. Package gzigg Mp d (gg) (ng)
11 Pill 173.49 620 2.58 0.56 7
12 Pill 160.93 200 2.52 0.97 8
13 Pill 171.71 409 2.43 0.615 23
14 Pill 171.35 400 2.48 G.51 23
15 Pill 169.72 > 1000 2.50 0.276 12
16 Pill 170.42 400 2.54 0.22 6
17 Pill 165.84 > 1000 2.51 0.915 10
18 Pill 164.68 160 2.53 0.077 2.2
19 Pill 168.85 629 2.56 0.454 3
20 Pill 161.47 400 2.52 0.23 4
21 TO-18 160.82 > 1000 2.54 0.85 25
22 T0O-18 169.15 > 100" 2.54 c.62 8
23 TO-18 165.75 250 2,58 0.6¢6 17
24 T0-18 167.95 > 1000 2.57 0.34 3.5
25 TO-18 159.77 > 1000 2.59 1.24 14
26 TO-18 164.74 > 1000 2.54 0.83 25
27 TO-18 153.82 400 2.54 0.87 30
28 TO~-18 167.59 > 1000 Z2.58 0.36 5.5
2e 10-18 172.38 > 31000 2.54 0.56 10
30 TO~-18 168.62 > 1000 7.53 0.61 9.5

As the avalanche gain is a sensitive function of
the ratio VfJB, and since VB changes with temperature, maintaining
a constant responsivity in the detector could be a problem. This
problem has been overcome by using an automatic bias circuit, as .
shown in Figure 16. 74 This circuit uses another photodiode as a
reference diode. The reference diode senses any changes in tem-
perature, and controls the series regqulator transistor, Qs through
the feedback amplifier Ql and 02. If the reference diode has the
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Figure 1l. Low-Frequency Gain and Noise
Measurement Circuit

same breakdown voltage and temperature coefficient as the photo-
diode, then the gain of the photodiode is constant.

1
H= —x%_a
B
1 - G
B
1 (3)
M:___—._
1 - &8

K is the output voltage ratio of R
Q3, uses a gallium arsenide light-emitting diode for dc isolaticn
of the input voitage and the feedback .amplifier, thus allowing a
single bias circuit to be used for a wide range of breakdown
yoltages.

21
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Figure 12. Avalanche Gain versus Bias Voltage for
Typical N*P Diode at 0.9 um

b. Quantum Efficiency

The quantum efficiency, n, of a photodiode is de-
fined as the ratio of the total photocurrent collected at the
junction, Ig, to the photon current incident on the surface of
the photodiode, qQO

Io
N =— (4)
%,
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Figure 13. I/M vevsus Voitage at 0.9 um

If light is allowed to enter the detector only from the top and

. within the active area, then n is based on Lambert's liaw
) #(x) =9, (L -R) e % (5
where
¢ (x; = photon flux at x 8

x = distance below surface
raeflection at the surface

f x
"

absorption coefficient for detector material
and wavelength light.
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Pigure 14. n versus Voltage a2t 0.9 mm

In a silicon avalanche photodetector the guantum
efficiency is complicated by the fact that electrons have an impact
ionization rate much higher than that for holes; therefore only
electrons initiate avalanche multiplication. In the structure
shown in Figure 1 only light abscrbed beiow the juncticn generates
carriers which are multipiied; the hole is the carrier which moves
to the avalanching junction in the N-type diffuse area. The totzl
quantum efficiency is composed of the electron quantum efficiency,
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Figure 15. Breakdown Voltage versus Temperature

Noe and the hole quantum efificiency, np; however; only n, con-
tributes to signal at high avalanche gains.

n=n +n {6)

For a given junction depth the maximum value for

M= Tonax) S © 3 (7)

It could be lower if some of the light were absorbed below the de-
pletion depth and the carriers were recombined before they reached

the junction.

Spectral response measursments were made on several
of the diodes, using & Perkin-Elmer spectrometer, a tungsten lamp,
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Pigqure 16. Automatic Bias Circuit

and a thermocouple as a flat power detector. Rnowing the photon
energy, we ccnverted the data to a relative gquantum efficiency.
Measurements were made at a high avalanche gain so that on1y11n
was measured, The regsults for an antireflection coated diode and
an uncoated diode are shown in Figure 17, Diodes supplied in the
pill package received a A /4 at 0.9 pym coating of SiO to reduce the
surface reflection. Coating resulted in approximately 45 percent

T

improvement in guantum efficiency at 0.9 um. Diodes supplied in
the T0-i8 package were not ccated.

In the model of an avalanche photodiode it is best
to use the actual electron gain instead of apparent or measured
gain, There can be a difference because of the differences in
electron and hole quantum efficiencies. The measured gain as de-
fined earlier can be written in terms of the electron and hole
gains and quantum efficiencies as:
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n. M +n_ ¥
M=_P_P n_n {8)
n_. +n
. b n
where
M = measured gain
MP = hole gain (=1)
Mn = electron gain.
27
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At high electron gains Equation (8) can be written

M n (9*
————tve  TH}  etmmetotttt—————
Mn nD + nn

For A = 0.9 um, np is small and the .ieasured gain is essentially
equal to the electron gain. A plot of the measured gain at

0.6328 um versus the 0.3 ,m gain is seen in Figure 18. The gains
were measured at the samz reverse bias voltages. If it is assuned
that the tota. quantum efficiency at 0.6328 uym is 100 percent then
che junction depth can be calculated from the slcpe of the curve,
Equation (9), and Equation (7).

M
n =

5 = 0.38
n Mn

a=3,7%x 103 (Dash and Newman 2/)

3
e -307 X le X.

n, = 3

X. = 2.6
3 pm
This represents a minimum junction depth, since n was assumed to be
1.0. Although this large junction depth was not expected, the low
electron quantum ef<iciency at 0.6328 from Figure 17 supports the
resu.ts of the calculations above. .

One explanation for the low quantum efficiency and
apparently deep junction is that the absorption coefficient is
actually larger than the value used in the calculation.

One additional aspect of the quantum efficiency con-
cerns the frequency xesponse. The quantum efficiency in the dis-
cussion above has been the low frequency or de quantum efficiency.
Carriers which are generated outside the depletion region reach
the junction by diffusion, a relatively slow procegs. At 0.9 um
the light has a large penetration depth (¢ = 5 x 102 1

cm ). For

28




Report No. 03-67-104

400

w
o
(=]
L}

M (A = .6328 um)
A
(=]
(o]
I

COATED DIODE
SLOPE = (.38

100

] i ]
] 100 200 300 400 500 600Q 700

M (A = 0.9 [

SC12045

Figure 18, Gain at 0.9 pm versus Gain at 0.6328 um

this reason it is difficult to obtain a silicon avalanche photodiode
with a high ac quantum efficiency. For the structure shown in Fig=
ure 1 the high-frequency electron quantum efficiency, n,s can be
written

n.=e *3-¢ Ta (20)

With a depletion width of 10 um and xj = 2,6 unm, n, would be
approximately 35 percent,

The quantum efficiency versus modulation frequency
was measured using a 0.9 um gallium arsenide light-emitting diode.
A germanium photodiode was employed to calibrate the light source.
Results are shown in Figure 18, At 60 kHz the response begins to
fall off, dropping to a vaiue of approximately 40 percent at
40 MHz. If we normalize the data to n, = 88 percent at 0.9 um
(Figure 17) then the measured Ny is approximately 35 percent, the
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Figure 19. PFPrequency Response of Quantum Efficiency

) same as that calculated from Equation (10). If the depletion

s width were doubled, then Equation (10) shows that n_, would be
increased to 56 percent; however, this would require a breakdown
voltage of approximately 350 volts.

Ce Leakage Currents

Leakage current in an avalanche photodiocde consists
of the unmultiplied surface leakage and the multiplied bulk leakage,

= 17
I I, + mc {11}

L s lo}

where

IL = total dark leakage current

g unmultiplied surface leakage
multiplied bulk leakage.

-4
)
o
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Avalanche gains allow the two components to be determined, as seen
in Figure 20. The total measured dark leakage is plotted versus
the electron gain (M at 0.9 pm). The slope of the line is I,
and the current intercept is the surface leakage. The results,
Icc = 0,28 nA and IS = 12 nA, are typical for the diodes.

In silicon the bulk leakage current is due mainly
to thermally generated carriers in the deplation region, instead
of the diffusion currents as in germanium. The carriers, thermaily
generated, ars swept to the junction befora recombination can
occury., The current then is . function of the volume of the de~
pletion region, and the lifetime Y

g Wé ni A

I ™ *—~§1::—- {12)
where
1 electron charge
= depletion layer width
= intrinsic carrier density
= carrier lifetime
area of active region.

o b o q

For diode No. 15, shown in Figure 20, the lifetime
of the bulk material is 3.9 us. Diode No. 18 had the lowest bulk
leakage, 0,077 nA, which would indicate a bulk lifetime of 14.3 us.
Calculating the diffusion length, L, from

L = /DT (13)

o

where D = electron diffusion constant, the respective diffusion
lengths are 110 ym and 2i0 uym. These lifetimes and diffusion
lengths are very good for finished silicon devices, indicating
that the low leakage currents are in line with the state of the
art,
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Figure 206. Total Leakage Current versus Gain

d. Avalanche Noise

Because of the statistical nature of avalanche
multiplication the noise power is found to increase at a faster
rate with gain than does the signal power. The noise of the

3/

avalanche process has been described by Mcintyre </ as
in® = 2q af 1 M9 (14)
where
Af = noise bandwidth

I = dc current that is multiplied
d

constant dependent on electron and hole
ionization rates.

Avalanche noise versus gain at 0,9 um was measured on each of the
20 diodes. The noise bandwidth of the system was 2.3 kliz at a
center frequency of 3,8 kHz., The noise was produced by the sum
of the bulk leakage current, Ico' and the coilected phstocurrent,
Iy. Typical values for I ranged from 2 to 5 nA. The system has
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an ac current to voltage transimpedance of 1.05 x 109 ohms. Sys-
tem noise at the output was 37 mV. A block diagram of the noise-
measurement circuit is seen in Fiqure 11,

24 typical plot of output noise versus gain is shown
in Figure 21. Equat.on (14) predicts a straight-line relationship
as seen in this figure. Deviation of the measured values from
this at low gains is due to the system noise. The point at M = 1
was calculated from Equation (14) and the system transimpedance.
The slope of the straignt line has a value of d/2 indicating that
d is 2,58 for the dicde. That value is typical for this series
of measurements, and we do not understand why it is higher than
the values obtained during the third quarter on identical diodes.

Deviation from the straight line is due to micro-
plasma breakdown and occurs at MT' defined az the gain of first
sustained breakdown. Range of Hp, for the dicdes was frcm 160 to

greater than 103.

e, Eguivalent Circuit

The avalanche photodiode can be represented by the
equivalent circuit seen in Figure 22, This iz essentially the
same circuit as given by Melchoir and Lynch,gy except for an admit=-
tance in parallel with the current source. The admittance, con-
sisting of a series resistor aid inductor, is not seen in Fig-
ure 22, since in silicon the current levels are low and the
resistance is normally high. The inductance includes gain-
bandwidth limitations which will be discussed later.

The signal current source, is, can be represented
by

i,=gq o (t) n, Mn

{15}
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Figure 21, Avalanche Noise Voltage versus Gain

where ¢ (t) is the modulated optical carrier. In parallel with the
signal current source is the avalanche noise source. Space charge
layer resistance, R, is inciuded tc describe the lowering of the
electric field due to widening of the depletion layer.ég/ For the
+

¥ P structure

wd2
Re =5 A v (16)
e 5
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FPigure 22, Avalanche Photodiode Eguivalent Circuit

where vy = hoile~saturated drift velocity. Calculations show R, to
be approximately 100 ohms,.

The junction capacitance, Cj, and pill-package
capacitance were measured at 1.0 MHz and found to be 1.2 pF and
0.25 pF respectively at high gains.

LA itk

Heasurements made on the diodes at 900 MHz, using
a GR-1602 UNF admittance meter, showed the diode series resistance
R to be 50 ohms, and cj and Cp to be 1.3 pF and 0.24 pF respectively,

v

Ui 8

£. Freguency Limitations

PR

T T

Other than the cutoff of the low-frequency quantum
efficiency (Figure 18}, three effects can limit the frequency re-~
sponse of an avalanche photodiode. First of these is the RC
cutoff due to junction capacitance and series resistance, If the

(it A A A LR
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diode is fed into a low-impedance amplifier then the RC cutoff
due to R, = 50 ohm and Cj = 1,3 pF ie 2.4 GHz, oL a rise time of
9.14 ns. This can be improved by conjugately matching the diode,

There is a frequency limitation due to the transit
time of carriers moving across the depletion region., This transit
time is given by

7]
T = {27)
8

where Vé is the saturated drift velocity typically 107 cn/sec for
electrons in silicon., The transit time cut-off frequency has been
shown by Gartnerzi/ to be

For the structure shown in Figure 1 the transit time cut-off
frequency is 3.6 GEz.

The other frequency limitation is due to the
multiple transits of carriers through the thin avalanche region,
and the corresponding time for the avalanche multiplication to
occur, This, normally represented as a gain-bandwidth product,
has been treated in detail by Emmons.éz/

The ac gain, Mac' at 509 MHz was measured as a func-
tion of the dc gain, Mdc‘ The same measurement was made during
the third quarter while holding Mdc Is constant ot 1.0 mA to avoid
current-saturation effects. When this was repeated, saturation
was found toc be present, and the new measurements were made at
much lower dc currents, Only the 508-MHz laser beat was used
because of the instability of the 1.0~GHz beat. The laser was
operated at +he 0,6328~ym line., The lower signal levels reguired
2 moye sensitive ac detector; a GR-DNT heterodyne detector was used.
The input photocurrent was held constant; therefore the total un-

multiplied current, I, was composed of the photocurrent plus the
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bulk leakage current, The results for two values of I are shown

in FPigure 23. Even with the low currents there apparently is

some current-éependent gain saturation. Prcbably this could be
explained by the shunt admittance described by Melchoir and Lynch.2/
Baz<d on the maximum Mac obtained for the two currents, the gain-
bandwidth product is approximately 70 and 50 GHz.

Since the light used for the measurement was at
0.6328 um and the actual electron gain was higher by the factor
1/0.38 (Figure 18) then the gain-bandwidth products would be
190 GHz and 130 GHz respectively. Althcugh these values are in
the range expected, it is difficult to assign any degree of
accuracy to the values., It is recommended that further work be
done in the area of correlating experimental results with the
thecry.,

g. NEP

The avalanche mechanism is used in a photodiode to
achieve improved sensitivity in a photodetector system which nor-
mally would be limited by noise in the preamplifier. A convenient
figure of merit in describing the noise performance of a detector
system is tbke noise-equivalent power {NEP). The effect of ava-
lanche gain on NEP has been discussed by Biard and Shaunfield.iz/
The NEP cf a photodetector using the N'P avalanche photodiodes was
measured and compared with the theory.

By definition the NEP of a compliete photodetector
is the rms value of sinusoidally modulated radiant power faliing
on the detector, which gives rise to a signal-to-noise ratio of 1,
referred to the Jetector terminals in a reference bandwidth of
1.0 Hz, The analysis shows that the NEP can be expressed with

ree terms.lzf

NEP = /Q + a2 + B% + c2 (19)
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Figure 23. AC versus DC Gain

where

_gpno V2BE a-2 (20)
mn;2

M (21;

"

: _MwmmmmmmmwMam*nmmmmmmm&mmwmmn‘ fi

c=-E «ul (22)

1. = dc quantum efficiency
n_ = ac quantum efficiency

I_ = equivaient dc current which would prcduce shot
noise at the input equal to the actual noise.

= bulk leakage current

4
I

CO

Ep = photon energy

m = modulation index
Af = noise bandwidth
4 = noise siope

M = avalanche gain.
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Term A is the NEP due to the shot noige on the dc ccmponent of the
input signal. Term B is the NEP due to shot noise on the bulk
leakage current. Term C is the NEP due to the preamplifier noise
in addition to surface leakage shot noise of the photodicds.

Tne circuit of the preamplifier used for the NEP
measurements is shown in Pigure 24. The amplifier has a current-
to-voitace transimpedance of 2.5K over the bandwidth from 3 kHz
to 30 MHz., Low-frequency cutocff i= due to a coupling capacitor
nct shown in the schematic, The preamplifier was followed by an
HP No. 461 amplifier, The gallium arsenide light-emitting dicde
was modulated at 40 kHz with m = 9,5, Provision was made for
turning oZf the modulation without affecting the dc component
of light, Output noise and signal were measured on a true ras
volimeter., Using neutraledensity filfr~ors, the light level on
the diode was so adjusted that the S/N ration was one, or there
was 3 dB of difference in output voltage with and without the ac
modulation. With this concition met, the output éignal vﬁitage
was referred to the input and tiie NE? was calculated from thie,
knowing m, Af, Ep, and n,. The results are seen in Figure 25 for
diode NHo. 15, The NEP decreases directly with M until it nulls at
a factor of 100 lower than the M = 1 or conventional detector
case. Above this null the avalanche noise becomes predoninant,
and there is an increase in the NEP. The null occurs at an opti-
mm gain of 160 to 200,

Each of the terms A, B, and C, and the NEP from
Equation (1%), are also shown in Figure 25 in an attempt to
rrelate the experimental resuits with the theory. The parameters
used in the NEP calculation are:

Ep = 1.4 ev
n, = 0.3
n, = 0.4
Af = 46.2 HBz
n= 0,631
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Figure 24. Preamplifier Circuit

d = 2,5

I 0.276 na,

co

Two Ciscrepancies are observed between the measured
and the calculated NEP: 1) The magnitude of the minimrm NEP =d
2) the slopz of the NEP at gains greater than the optimum gain.
The fact that the measured NEP was lower than the calculated NEP
by a factor of 2.5 suggests that the value for d used in the calcu~
lations was too high. Had & been 2.2 the magritude of the null
would have been the same as that mecasured.

The major discrepancy is the shape of the NEP at
high gains above tho null. Theory supports the prediction that
NEP in this range will increase with Md~2; however, the data show
NEP increasing with M to Mz, indicating that d would be 3 to 4.
While this is not completely unreasonable, it would require that
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Figure 25, NEP versus Gain for Diode No. 15
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the value of 2 and B at M = 1 would be reduced two orders of
. magnitudes. Although there >ould be some error in A or B, it is

liid ity i)

not at all this large.

bl atubt

One possible explanation for the large slope of
NEP above the null resulted from an investigation of the measure-

it el i i

ment technigque. There could be a small amount of ripple or stray
pickup on the dc bias side of the diode terminals. 2t large gains
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the diode impedance decreases and a current is fed into the preampli-
fier. Wwhen introduced into the NEP analysis there is an additional
term which increases as Mz. For the NEP magnitude obsezved at

M = 500 the ripple or stray pickup would have to be 0.0l percent

of the dc bias voltage. It would also have to be a freguency in

the passband of the amplifier. This effect should be studied further
for better correlating the measurad with the calculated NEP, and also
so that some specifications can be put on the avalanche photodiode
voltage supplies,

One other possible explanation for the NEP slope
above the null is that the diode had a microplasma which became
noigy at high gains. This is unlikely because of the smooth curve.
Figure 26 shows the measured NEP for diode No, 18, which had a
microplasma breakdown at MT = 200. Note the sharp increase in
the NEP as opposed to the gradual increase of diode No. 15.
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¥Figure 26, Mesasured NEP versus Gain for Dicde No. 18
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Although thece is some discreparcy in the NEP data,
it is clear that detector sensitivity was substantially improved
by using avalanche breakdown. It should be pointed out that in
NEP, as normally used, m is 1,0, For that case the NEP would have
been somewhat lower than the measured 2 x 10° %5 W Hz .

3. Project Performance and Schedule

Texas Instruments Incorporated
Contract No. NCbsr 95337 (Report) Date:! November 1967
Period Covered: 16 May 1966 through 30 September 1967

1966 1967

1. Device Design and Fabrication

Obtain Photomask

Determine Optimum Diffusions

Produce Experimental Epitaxial
Slices

Fabricate Planar Epitaxiai
Diodes

Fabricate N*P Diodes

*
2. Characterization of Experimental
Diodes

"

Gain Characteristics
Quantum Efficiency
Noise Performance

Frequency Response

[

Characterize and Deliver

State-of-the-Art Samples ! ‘

kil I v iRl s
il B s b b o SRS i AR pt A i Y WA At
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Legend:
SEEd Work Performed E——— schedule of Projected Operaticn
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Item: g£astimated completion in percent of total effort expected
to be expended (not chronological):
1) Obtain Photomasks 100s
2) Determine Optimum Diffusions 1008
3) Produce Experimental Epitaxial Slices 100%
4) Fabricate Planar Epitaxial Diodes 100%
5) Determine Gain Characteristics 100%
6} Determine Quantum Efficiency 100%
7) Determine Noise Characteristics 100%
8) Determine Frequency Response 1008
%) Characterize and Deliver Samples 100%

Notes and Remarks:

None.
D. CONCLUSIONS

The contract was concluded with the successful fabrication
and characterization of 20 state-of-the-art silicon avalanche
photodiodes. Two types of structures were investigated during
the contract period. The NP7mP structure, first investigated, was
found to have edge breakdcwn in wide w~region diodes. Because of
problems with the NPxP sziructure, the Ntp structure utilizing a
graded guardring was fabricated.

Final characterization was done on the N*P dicdes. 1In
summary the diodes typically had low-nuise gains in excess of
1000, noise slopes of 2.5 and less, series resistance of 50 ohms,
junction capacitance of 1.3 pF, ac quantum efficiency of 35 percent
at 0.2 um, and bulk leakage currents of 0.5 nA. These parameters
result in an NEP of a photodetector system in the order of 10-13
w #2722 at 0.9 um and a bandwidth of 30 MHz, a factor of 100

* improvement over a non-avalanche system.
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SECTION II
PROGRAM FOR NEXT INTERVAL

With the successful completion of the contract requirements
° the effort has been terminated.
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